90.9 WBUR - Boston's NPR news station
Top Stories:
PLEDGE NOW
Science

Jacqueline Miller: American students are simply not learning the content and skills that will help them succeed in the 21st century, where technology and science are core to everyday life. (zhouxuan12345678/flickr)

Once again, U.S. students have performed poorly on an international test and the hand wringing has begun. This time it is the Program for International Student Assessment, or PISA, which measures how well students can apply what they have learned in reading, mathematics, and science to practical problems. Out of 34 Organisation for Economic Co-operation and Development member countries, United States students ranked 17th in reading, 26th in math, and 21st in science.

As observed by Diane Ravitch and other education historians, the U.S. has rarely fared well on the lineup of international tests that began in the mid-1960s. Whether these tests are a meaningful indicator of the quality of education and global economic success is subject to debate.

For most students, the study of science is still an exercise in memorization and regurgitation. A jumble of disconnected facts is presented, unaccompanied by opportunities for investigative, problem-solving experiences.

What is not debatable, though, is that science education for all students in this country is, in and of itself, mediocre. American students are simply not learning the content and skills that will help them succeed in the 21st century, where technology and science are core to everyday life.

Over the years, I have observed classrooms where students had already decided that science and math were not for them. “I hate science, I hate math,” came the exasperated refrain. But when I asked them what they hated and how it could be made better, I discovered that they actually loved the experimentation of science and were engaged by the relevance of math to their lives. What they hated was how these subjects were taught.

As stated in the National Research Council’s 2012 report “Education for Life and Work: Developing Transferable Knowledge and Skills in the 21st Century,” students thrive when they are engaged in course content that focuses in depth on core concepts within a discipline, contextualizes the learning in real-world situations relevant to their lives, and provides investigative experiences that require transfer of knowledge to address a challenge or answer a question.

Yet, for most students, the study of science is still an exercise in memorization and regurgitation. A jumble of disconnected facts is presented, unaccompanied by opportunities for investigative, problem-solving experiences. We are not educating students to succeed on international exams, but, more importantly, we’re not developing science-literate citizens or encouraging future scientists, either.

Studies have shown that curriculum and teachers are the two most important determinants of student learning and achievement. Effective curriculum shapes not only what content is taught but how it is taught. This, in turn, affects student achievement of the learning goals. Today, far too few schools are using pre-K through 12 science curricula that:

  • Build students’ understanding of big, fundamental concepts over time in a coherent conceptual flow
  • Explore fewer topics in greater depth
  • Promote understanding and use of the practices and competencies required of scientific investigations
  • Incorporate ongoing assessment to inform instruction
  • Motivate students to learn by engaging them in hands-on investigations and real-world problems

Simultaneously, far too few teachers have the opportunities or support they need to implement these types of materials. Extensive testing requirements have driven too many teachers to cover massive amounts of content and teach to the test. A lack of instructional and pedagogical resources thwarts their chances to move their own practices to a more ambitious teaching model. And although we know that digital tools can enhance student learning and extend teaching practice, few teachers have access to training and support in using these tools appropriately.

If, as a nation, we make a concerted effort to improve the learning and teaching of science, then better test results will surely follow.

Achieving deeply rooted change that ensures students’ success and equips them for life in the 21st century starts with our teachers. Providing these dedicated individuals with ongoing professional development experiences that help build a strong content background, knowledge of effective teaching strategies, and understanding of appropriate uses of digital resources should be the standard, not the exception.

We also need policymakers who are more concerned with what students are learning than how they are performing on international exams. If, as a nation, we make a concerted effort to improve the learning and teaching of science, then better test results will surely follow. Policy-making groups who will lead this effort must include teachers who, more than anyone, understand the reality of the classroom and can lead U.S. science education from mediocrity to excellence.

This indictment of science education goes far deeper than PISA scores. But we know how to fix what’s wrong. Let us start now — and not lose a generation of science-literate citizens, mathematicians, and scientists to a failure in teaching when the inspiration to explore, to experiment, and to learn is all around us.

Editor’s note: If you’d like to try some PISA test questions yourself, you can do so here.

Related:

The views and opinions expressed in this piece are solely those of the writer and do not in any way reflect the views of WBUR management or its employees.

Please follow our community rules when engaging in comment discussion on this site.
  • Samuel Walworth

    Problem is not only that how it is taught but culturally Science mathematics is not ” cool ” any more hence most kids do not consider it a priority.

  • Jim

    My first job I earn 30k a year as a teacher. Inwas offered a job at biotech company for 67k and turned it down. I love teaching but most of my friends think I am insane for not going after the money. A lot of times not the best or the brightest are teaching your kids. Educators are judged on reputation and parental complaints not on the building of young minds.

  • carfash

    I have faith in anyone who may lack a skill through inattention to detail when they are young to fast forward it to completion when they see the need. One does not live by one test alone. Our methods of measuring people according to tests does not take Into consideration the creative spirit of the person who can overcome said “handicaps”. Miracles seem to happen exponentially upon need. This idiocy of measurements of this type on our students is exactly that- idiotic at best.

  • Lophius

    As a middle school science teacher, I agree with much of this article. So much attention over the years has been on students’ literacy/reading and math scores, often at the expense of putting science on a lower priority level. Silly, because when done right, science can ENHANCE literacy and math skills. But, I digress…

    Over the years, I have seen a lot of talk about the need for science to be taught “better” (as described above), and I think these points are quite valid. But, I agree with the author in her assertion that there are not enough opportunities or support to
    implement the necessary initiatives (we’re talking about some significant shifts in thinking, budgets, materials, pedagogical approaches, etc.), and that the ever-expanding testing requirements are directly competing with (i.e., stealing) valuable instructional time. And, don’t even get me started on the “digital tools” that the students in my urban district simply don’t have access to – no reliable Internet at home, old (WinXP) notebook computer carts, etc.

    Lastly, I want to expand on an idea offered by a previous poster, that of science not being seen as “cool”. I have had students win awards at my district-wide Science Fair, yet they get little more than a handshake and a paper certificate when they get back to my school. Our football and basketball teams have great seasons (but don’t necessarily win the championships), yet they are given a big lunch, get to wear their uniforms to class, and are cheered on in the cafeteria. What kind of message does that send to our students???

  • Elaine

    I’m surprised that the author is not aware of the new science standards (called the Next Generation Science Standards, or NGSS) that have recently been adopted by 26 states across the country. They address almost all of the concerns laid out in her article. The Department of Elementary and Secondary Education in Massachusetts has adapted NGSS to their needs and a draft version has been released for public comment before the department moves to adopt the final form. I agree that ongoing assessment during instruction is still an issue (called “formative assessment”), but this concern is across the board in all curriculum areas, not just science. So, the author is not alone in her desire to revamp science education and concrete steps are being taken to do so. That’s good news!

TOP